Because the intersection points of the parametric equations should satisfy the sphere equation, we will substitute the
values of x y and z of the parametric equations into the sphere equation:
(x1 + xtt − xc)2 ⧾
(y1 + ytt − yc)2 ⧾
(z1 + ztt − zc)2 = r2
[(x1 − xc) + xtt]2 ⧾
[(y1 − yc) + ytt]2 ⧾
[(z1 − zc) + ztt]2 = r2
Now we will find the square values of the parenthesis.
(x1 − xc)2 + 2 (x1 − xc)xtt + xt2t2 +
(y1 − yc)2 + 2 (y1 − yc)ytt + yt2t2 +
(z1 − zc)2 + 2 (z1 − zc)ztt + zt2t2 −
r2 = 0
Arranging the expression received as a powers of t we get:
(xt2 + yt2 + zt2) t2 +
2 [(x1 − xc) xt + (y1 − yc) yt + (z1 − zc) zt] t +
(x1 − xc)2 +
(y1 − yc)2 +
(z1 − zc)2 − r2 = 0
And we got a quadratic equation of the form: at2 + bt + c = 0
Where:
a = (xt2 + yt2 + zt2)
b = 2 [(x1 − xc) xt + (y1 − yc) yt + (z1 − zc) zt]
c =
(x1 − xc)2 +
(y1 − yc)2 +
(z1 − zc)2 − r2
Substitute these values of t into the parametric line equations to get the intersection points.
|